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Abstract—This article addresses the problem of computing
a Cramér-Rao bound when the likelihood of Euclidean obser-
vations is parameterized by both unknown Lie group (LG)
parameters and covariance matrix. To achieve this goal, we
leverage the LG structure of the space of positive definite
matrices. In this way, we can assemble a global LG parameter
that lies on the product of the two groups, on which LG’s intrinsic
tools can be applied. From this, we derive an inequality on
the intrinsic error, which can be seen as the equivalent of the
Slepian-Bangs formula on LGs. Subsequently, we obtain a closed-
form expression of this formula for Euclidean observations. The
proposed bound is computed and implemented on two real-
world problems involving observations lying in Rp, dependent on
an unknown LG parameter and an unknown noise covariance
matrix: the Wahba’s estimation problem on SE(3), and the
inference of the pose in SE(3) of a camera from pixel detections.

Index Terms—Cramér-Rao bound (CRB), Lie groups (LGs),
unknown covariance matrix.

I. INTRODUCTION

The accuracy of wide-sense unbiased estimators can be
characterized by the Cramér-Rao bound (CRB), which

gives insights on the ultimate minimum mean square error
(MSE) [1]–[5]. The standard CRB formulation is suitable
for unknown deterministic parameters lying in the Euclidean
space. To tackle estimation problems involving unknown pa-
rameters that must conform to certain geometric constraints,
it is crucial to develop new estimation metrics and associated
CRBs, hereinafter referred to as intrinsic, that take into ac-
count their geometry. In particular, recent emphasis has been
placed on cases where the parameters belong to a Lie group
(LG), a parameter space commonly encountered in the fields
of signal processing, robotics, and control theory [6], [7].

A myriad of practical estimation problems exemplify the
use of parameters on LGs. To cite a few, in computer vision,
the registration problems aim to find correspondences between
two images, this mapping naturally translates to a geometric
transformation in the special Euclidean group, denoted as
LG SE(3), or the similarity group SL(3) [8]. Moreover, in
numerous target tracking applications, it is often necessary to
estimate the orientation of a mobile object constrained to lie
on the LG of unitary rotation matrices, denoted as SO(3)
[9]. In line with the widespread practical estimation problems
involving LGs, in the last decade, there has been a growing
interest in deriving lower bounds on LGs, [10]–[12]. These

lower bounds can be obtained by minimizing an intrinsic MSE
(IMSE) consistent with the LG geometric structure.

In particular, in the seminal papers [12], [13], an inequality
on the IMSE for LGs was proposed. Under certain assump-
tions, it is possible to approximate this inequality and obtain an
analytical CRB expression on LGs (LG-CRB) for Euclidean
observations, that only admits a closed-form expression for the
specific LG SO(3) [14]–[17]. To bypass these shortcomings,
a new LG-CRB formulation was proposed in [18], which
adapts the formalism of the Euclidean Barankin and Mc-
Aulay-Seidman bounds [19]–[21] to LGs. This new formu-
lation allows to derive the LG-CRB without approximations.
Notably, this new bound admits a closed-form expression for
the LG SE(3) in the case of Euclidean observations.

Furthermore, many estimation problems on LGs assume,
for simplicity, that the noise covariance on observations is
known. However, this simplifying assumption does not hold
in many real-world applications. For example, in the context
of extended target tracking, radar observations are spread
across different areas of the target and are characterized by
an unknown dispersion covariance matrix that needs to be
estimated [22], [23]. Likewise, in computer vision, a camera
measures and detects pixels in an image, which depend on the
unknown camera transformation in SE(3), where the detection
noise is usually unknown due to the image signal-to-noise
ratio [24], [25]. These problems require the joint estimation
of unknown deterministic parameters on LG and a covariance
matrix. To evaluate the theoretical performance of this joint
estimator, an intrinsic CRB must be developed.

In the state-of-the-art, the space of semi-positive definite
matrices, such as covariance matrices, forms a differentiable
manifold so-called Riemannian manifold. The Riemannian
structure of the covariance matrix space is classically used for
intrinsic estimation problems, and associated intrinsic CRBs
exist [16], [26]. The derivations of the intrinsic CRBs are
performed using metrics on the tangent space, depending on
the considered observation model, particularly for Gaussian
and elliptical distributions [27], [28]. Consequently, it is
challenging to obtain a bound considering the Riemannian
structure of both the covariance matrix space and the LG of
interest, as the Riemannian metric of the latter is difficult
to characterize, especially for most physical LGs such as
SE(3) or SL(3), making derivations and integrals impossible
to compute.
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It is worth noting that covariance matrix estimation with
LG parameters has already been addressed in [29], [30] by
performing eigenvalue decomposition, which reveals the LG
product of a diagonal matrix and SO(s). While this approach
may be relevant for estimation algorithms, it does not allow
for the computation of LG-CRB analytical expressions. To
overcome this limitation, it is possible to leverage the so-called
log-Euclidean framework [31], [32] for the set of symmetric
positive definite matrices (SPD), denoted as P+(s). Equipped
with the log-Euclidean law, P+(s) defines a commutative
LG [33]. Its LG structure offers several advantages. First, it
provides a unified formalism for the estimation problem on
an augmented LG when dealing with unknown parameters
belonging to a LG. Second, it allows for computations that lead
to tractable expressions for various observation models. Using
the LG properties can be relevant for two reasons: first, any
LG equipped with a law can also be equipped with a metric
specific to its LG structure, and second, its metric enables
handling derivative computations [31], [34].

The main contribution of this article is to formalize a
LG-CRB on LGs, called Covariance LG CRB (C-LG-CRB),
by incorporating the covariance matrix into the unknown
parameters with its LG structure for Euclidean observations.
To formalize the C-LG-CRB while taking into account the
covariance matrix, we exploit the fact that if the unknown
parameters of interest belong to a LG G, then the tuple of
unknown parameters, gathering the latter and the unknown
covariance matrix, belongs to the LG product G × P+(s).
By using the intrinsic properties and tools of this new LG
space, we can derive a generic bound expression. Another
contribution is to derive this bound for two important examples
with Euclidean observation models. First, we consider the
case where 3D observations are available, which depend on
an unknown affine transformation, as in the Wahba’s problem
[35]. Second, we consider an application based on the well-
known pin-hole model for a sensor camera observing a scene
and detecting obstacles [36]. In this context, 2D observations
depend on two affine transformations linked to the camera
pose. To the best of our knowledge, the LG-CRB has been
derived for the first model but not for the second one.
Moreover, the C-LG-CRB has not been computed for either
of the two models. Numerical results are provided to support
the discussion.

II. BACKGROUND ON LGS ESTIMATION

A. Matrix Lie group: properties

A matrix LG (G ⊂ Rn×n,⊛) is a matrix space equipped
with a structure of both smooth manifold and group. Its
structure of group defines an internal law ⊛ and its structure
of smooth manifold defines a tangent space at each point of
G. The identity tangent space g is the Lie algebra where each
element is connected locally to each element of G through the
logarithm and exponential applications defined, respectively,
by ExpG : g → G and LogG : G 7→ g, as illustrated in figure
1. As g is isomorph to Rm, we can define two bijections
[.]∧ : Rm 7→ g and [.]∨ : g 7→ Rm. m is the dimension of
the Lie algebra. In this way, we can denote the exponential

and logarithm applications such as ∀ a ∈ Rm, Exp∧G (a) =
Exp ([a]∧G) and ∀ M ∈ G, [LogG (M)]

∨
G = Log∨G (M) . For

more details about the LG theory, the reader can refer to [37],
[38]. As a LG is connected to tangent spaces, we can define
the notion of derivation. Especially, it is feasible to generalize
the definition of the Euclidean directional derivative on LGs
by defining a direction in the Lie algebra. Let g : G 7→ H be a
LG-valued function in H with law ⊘. The right Lie derivative
of g in M ∈ G is given by (∀ϵ ∈ Rm):

LR
g(M) =

∂Log∨
H

(
g(M)−1 ⊘ g(M ⊛ Exp∧

G (ϵ)
)

∂ϵ⊤

∣∣∣∣∣
ϵ=0

.

(1)

When g has values in R or Rp then Log∨
H (.) = I and the

derivative of g can be defined as [39]:

LR
g(M) =

∂g(M ⊛ Exp∧G (ϵ) )

∂ϵ⊤

∣∣∣∣
ϵ=0

∀ϵ ∈ Rm. (2)

≜ ∇g(M,⊛) (3)

It is worth noting that this definition of the Lie group gradi-
ent can be related to the Riemannian gradient [40, proposition
3.59], due to the Riemannian structure of a Lie group.

In addition, if M =

[
M1 0
0 M2

]
with M1 ∈ G1 with law

∗ then the Lie derivative of g according to M1 is:

LR
g(M) =

∂g(M ⊛ Exp∧
G

([
ϵ⊤M1

,0⊤])
∂ϵ⊤M1

∣∣∣∣∣
ϵ=0

(4)

≜ ∇M1g(M, ∗) (5)

It is also possible to define a left Lie derivative by switching
M and Exp∧G (ϵ) . In this work, we have chosen to use the
right formalism, as it is more compatible with the LG-CRB
formalism in the state-of-the-art [13] [14] [18], especially
because it facilitates the computation of error bound on LGs
in a Bayesian context [41].

Fig. 1. Relation between Rm, G and g.

B. Estimation and Cramér-Rao bound on Lie groups

To define estimation concepts, and in particular the concept
of estimation error, we first need to define the tool for intrinsi-
cally quantifying the gap between two LG points through the
intrinsic path.
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1) Notion of intrinsic path:

Definition II-B.1 (Intrinsic path on LGs). The intrinsic path
between two LG elements A and B is defined as

l⊛G(A,B) = Log∨G
(
A−1 ⊛B

)
, ∀ (A,B) ∈ G×G. (6)

Fig. 2. Illustration of the intrinsic path between two points A and B ∈ G.
The path between A and B is given by A−1 ∗ B and is projected on the
Lie algebra.

Remark:
It is worth pointing out that the norm of this intrinsic path,

the gap ∥lG(A,B)∥2 does not generally define a distance
mathematically speaking (although this is the case for the LG
SO(3)), because not all axioms of a distance are respected.
Nevertheless, as illustrated in figure 2, it specifies a good
indicator of the intrinsic path traveled between two LG points,
and it is classically used in the LG estimation literature [6] [42]
[43] to compare an unknown LG parameter with its estimator.

2) Estimation on Lie groups: We consider the case where
the parameter M lies on the LG G equipped with the law
⊛. We consider a set of Euclidean observations z = {zi}Ni=1

with zi ∈ Rs distributed according to the likelihood p(z|M).
An estimator of M, denoted M̂, is described by the same
indicators as in the Euclidean space, but in an intrinsic way
[9] [44]. Indeed, according to the definition (II-B.1), the
intrinsic bias bz|M(M, M̂), the mean M

M̂
and the IMSE

Cz|M(M, M̂,⊛) can be respectively defined by:

bz|M(M, M̂) = Ep(z|M)

(
l⊛G

(
M, M̂

))
, (7)

Ep(z|M)

(
l⊛G

(
M̂,M

M̂

))
= 0, (8)

Cz|M(M, M̂,⊛) = Ep(z|M)

(
l⊛G

(
M, M̂

)
l⊛G

(
M, M̂

)⊤)
.

(9)

Knowing these different indicators, it is possible to formalize
an intrinsic error bound for M ∈ G which is a lower bound
on the IMSE, as illustrated in figure 3. In the following, for
the sake of clarity, we define E(·) ≜ Ep(z|M)(·).

3) Cramér-Rao bound on Lie groups: The first version of
the CRB on LGs was proposed in the seminal paper [11].
However, the proposed bound only admits a closed-form for
the group of rotations SO(n). To bypass this shortcoming, we
have proposed in our previous work [18] a more general CRB

formulation on LGs. For the purpose of this article, we will
make use of this alternative formulation.

Fig. 3. Building an error bound on Lie groups with Euclidean observations.

Theorem II-B.1 (LG-CRB for Gaussian Euclidean observa-
tions). By assuming that we can build an unbiased estimator
M̂, in the sense of (7), from observations z = {zi}Ni=1,
zi ∈ Rs, with likelihood p(z|M) verifying the following
assumption:∫

∇ (log p(z|M),⊛) dz = ∇
(∫

log p(z|M)dz,⊛

)
(10)

then, the IMSE is bounded by the LG-CRB1:

Cz|M(M, M̂,⊛) ⪰ I−1
G , (11)

where IG is the intrinsic Fisher information matrix (IFIM):

IG = E
(
∇lp(M,⊛)∇lp(M,⊛)⊤

)
, (12)

and lp(M, δ,⊛) = log p(z|M ⊛ Exp∧
G (δ)) which can be

rewritten:
IG = −E(∇2lp(M,⊛) ), (13)

where

∇2lp(M,⊛) =

∂2log p(z|M ⊛ Exp∧G (δ1) ⊛ Exp∧
G (δ2))

∂δ1∂δ
⊤
2

∣∣∣∣
δ1=δ2=0

(14)

Remark:
It is important to stress that the LG-CRB is different from

the Riemannian CRB proposed in [46] because it is intrinsic
to its group structure. Indeed, this formalism does not need to
use a Riemannian metric, specific to the Riemannian structure
of the considered LG, but only the notion of an intrinsic path
defined by equation (6).

Corollary II-B.1.1 (Expression of LG-CRB for Gaussian
Euclidean observations). Let us assume that p(zi|M) is a
Gaussian distribution:

p(zi|M,Σ) = N (zi, fi(M),Σ), (15)

1If we consider two matrices Σ1, Σ2, Σ2 ⪰ Σ1 means that the matrix
Σ2 - Σ1 is positive (Löwner ordering [45]).
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where fi : G → Rs is a smooth function and Σ ∈ Rs×s. If
{zi}Ni=1 are independent between them, then the matrix IG
verifies the following relation on LGs,

IG =

N∑
i=1

∇fi(M,⊛)⊤Σ−1 ∇fi(M,⊛). (16)

To draw a parallel with well-known established results
in parametric estimation problems for Euclidean parameters,
the Slepian-Bangs formula [47], [48] provides a closed-form
expression (devoid of the expectation operator) of the Fisher
information matrix for Gaussian observations with unknown
mean and covariance. It is worth noting that the formula (16)
can be seen as an intrinsic equivalent of the Slepian-Bangs
formula in the case where the covariance matrix is known. In
this work, we propose to extend this formula by integrating it
into the unknown parameter space.

III. DEVELOPMENT OF THE CRAMÉR-RAO BOUND WITH
UNKNOWN COVARIANCE MATRIX

In this section, we first give the tools to define the set
of covariance matrices as a LG. More precisely, we intro-
duce its intrinsic properties. Then, we express and detail the
expression of the proposed C-LG-CRB taking into account
an unknown covariance matrix. Particularly, we provide a
generic expression, and a specific expression for the Gaussian
Euclidean model depending on both unknown LG parameters
and covariance matrix.

A. Lie group product and SPD matrices

Theorem III-A.1 (Lie group structure of SPD matrices).
The set of covariance matrices with size s forms the space
of symmetric positive definite (SPD) matrices P+(s) defined
such as ∀Σ ∈ P+(s)

|Σ| > 0, Σ = Σ⊤. (17)

Let us define Expm and Logm respectively as the exponential
and matrix logarithm. The group (P+(s),⊙, I) defined by:

Σ1⊙Σ2 = Expm (Logm(Σ1) + Logm(Σ2)) ∀ (Σ1,Σ2) ∈ P+(s)2,
(18)

is a commutative LG with Lie algebra S+(s) being the set
of symmetric matrices with dimension d = s (s+1)

2 [31] [33].
Group logarithm and exponential are given by

Log∨
P+(s)(Σ) = vech (Logm(Σ)) , (19)

Exp∧
P+(s) (δ) = Expm(sym (δ)), (20)

where the operator vech stacks the columns of the matrix
Logm(Σ) ∈ S+(s) one below another into a single column
vector by excluding the upper triangular portion. sym is the
reciprocal function of vech. Furthermore, the intrinsic path
between two elements is:

l⊙P+(s) (Σ1,Σ2) ≜ Log∨P+(s) (Σ1) − Log∨
P+(s) (Σ2) .

The latter can be interpreted as the Euclidean path com-
puting the difference between the two points projected on the
Lie algebra. In the case where s = 2 and Σ1 and Σ2 are
diagonals, it amounts to compute the gap between the real
logarithm of each diagonal coefficient.

Fig. 4. Building an element of P+(s). An element of Rd is brought to the
tangent space at identity S+(s) through the operator sym. Then, the associated
element Σ1 ∈ P+(s) is obtained by applying Expm.

Remark:
If we consider a LG-defined function h : P+(s) → Rl.

Its Lie derivative according to Σ ∈ P+(s) is given by the
formula (3) and is written as ∀Σ ∈ P+(s):

LR
h(Σ) =

∂h(Σ⊙ Exp∧
P+(s) (δ) )

∂δ⊤

∣∣∣∣∣
δ=0

(21)

≜
∂h(Expm (Logm(Σ) + sym (δ))

∂δ⊤

∣∣∣∣
δ=0

(22)

Theorem III-A.2 (Lie group product with SPD matrices).
Now, let us consider a matrix LG (G ⊂ Rn×n, ∗) with
dimension g. The Lie group product G′ = G×P+(s) is also

a LG equipped with law ⊕ such as ∀ X1 =

[
M1 0n×s

0s×n Σ1

]
∈ G× P+(s),∀ X2 =

[
M2 0n×s

0s×n Σ2

]
∈ G× P+(s):

X1 ⊕X2 =

[
M1 ∗M2 0n×s

0s×n Σ1 ⊙Σ2.

]
(23)

The group exponential application of G′ is given ∀δ =[
δ⊤G, δ

⊤
P

]⊤
∈ Rg+d by

Exp∧G′(δ) =

[
Exp∧

G(δG) 0n×s

0s×n Exp∧
P+(s) (δP )

]
. (24)

Concerning the logarithm application, it is given by

Log∨G′(X) =

[
Log∨

G(M)
Log∨

P+(s)(Σ)

]
∀X =

[
M 0n×s

0s×n Σ

]
(25)

and the intrinsic path by

l⊕G′ (X1,X2) =
[
l∗G (M1,M2)

⊤
, l⊙P+(s) (Σ1,Σ2)

⊤
]⊤

.
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B. Expression of the bound

In this subsection, we provide the expression of the pro-
posed intrinsic bound (C-LG-CRB).

Corollary III-B.0.1 (C-LG-CRB for a generic model).
We consider a set of observations z = {zi}Ni=1, zi ∈ Rs

characterized by its likelihood p(z|X) where the unknown
parameter is X ∈ G′ = G × P+(s). According to (III-A.1)
and (III-A.2), the IMSE between X and X̂ is bounded by I−1

G′ .

Theorem III-B.1 (C-LG-CRB for Gaussian Euclidean
observations). If the observations z = {z1, . . . , zN} are
independently distributed from

p(zi|M,Σ) = N (zi; fi(M),Σ), (26)

then

IG′ =

[
A 0d×g

0g×d B

]
, (27)

where

A =

N∑
i=1

∇fi(M, ∗)⊤ Σ−1 ∇fi(M, ∗) (28)

LR
fi(M) =

∂fi(X ∗ Exp∧
G

(
ϵM1 )

)
∂
(
ϵM1
)⊤

∣∣∣∣∣
ϵM1 =0

(29)

B =
N

2
T (30)

T = diag

1, . . . , 1︸ ︷︷ ︸
s

, 2, . . . , 2︸ ︷︷ ︸
s (s−1)

2

. (31)

Proof:

As the unknown parameter are divided into two parts, we
can decompose IG′ as follows:

IG′ =

[
A C
C⊤ B

]
(32)

with

A = E
(
∇Mlp(X,⊕)∇Mlp(X,⊕)⊤

)
(33)

B = E
(
∇Σlp(X,⊕)∇Σlp(X,⊕)⊤

)
(34)

C = E
(
∇Mlp(X,⊕)∇Σlp(X,⊕)⊤

)
. (35)

• Computation of A:

By applying the Slepian-Bangs formula (16) on M, we
obtain directly:

A =

N∑
i=1

∇fi(M, ∗)⊤Σ−1∇fi(M, ∗). (36)

• Computation of B:

As ϵ → log p
(
Z|X⊕ Exp∧

G (ϵ)
)

is a quadratic function, it
verifies (10)

E
(
∇Σlp(X,⊕)∇Σlp(X,⊕)⊤

)
= −E

(
∇2

Σlp(X,⊕)
)
.

(37)

On the other hand, we know that:

∇2
Σlp(X,⊕) =

∂2

∂ϵΣ1 ∂ϵΣ2

(
−N

2
log|Σ ⊙ Exp∧P+(s)

(
ϵΣ1
)
⊙ Exp∧

P+(s)

(
ϵΣ2
)
|−

1

2

N∑
i=1

(zi − fi(M))⊤(Σ⊙ Exp∧P+(s)

(
ϵΣ1
)
⊙ Exp∧

P+(s)

(
ϵΣ2
)
)−1

(zi − fi(M))|ϵΣ1 =0,ϵΣ2 =0 . (38)

and can be simplified in the following way:
• first, we demonstrate, in appendix B that:

∂2

∂ϵΣ1 ∂ϵΣ2
log|Σ⊙Exp∧

P+(s)

(
ϵΣ1
)
⊙Exp∧

P+(s)

(
ϵΣ2
)
| = 0,

(39)
• second, we show that ∀(k, l) ∈ {1, . . . , d}2:[

∂2

∂ϵΣ1 ∂ϵΣ2
(Σ⊙ Exp∧

P+(s)

(
ϵΣ1
)
⊙ Exp∧

P+(s)

(
ϵΣ2
)
)−1

]
k,l

= −Gk Gl Expm
(
−Logm(Σ) + sym(ϵΣ1 ) + sym(ϵΣ2 )

)
,

(40)

where {Gi}di=1 is the natural basis of S+(n). Conse-
quently, we obtain that ∀(k, l) ∈ {1, . . . , d}2:

[
∇2

Σlp(X,⊕)
]
k,l

∣∣∣
ϵΣ1 =0,ϵΣ2 =0

= −1

2

N∑
i=1

tr ((zi − fi(M))⊤Gk Gl Σ
−1 (zi − fi(M))

(41)

= −1

2

N∑
i=1

tr
(
(zi − fi(M)(zi − fi(M))⊤Gk Gl Σ

−1)
)
,

(42)

and

E
[
∇2

Σlp(X,⊕)
]
k,l

∣∣∣
ϵΣ1 =ϵΣ2 =0

=

− 1

2

N∑
i=1

tr
(
E
(
(zi − fi(M))(zi − fi(M))⊤

)
Gk Gl Σ

−1
)

= −1

2

N∑
i=1

tr
(
ΣGk Gl Σ

−1
)

= −1

2
N tr (Gk Gl) .

Finally, we obtain that B =
N

2
T, where

(T)k,l = tr (Gk Gl) ∀(k, l) ∈ {1, . . . , d}2. (43)

Here, it is worth noting that the highlighted expression of
B depends on the order in which the base is selected through
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the matrix T. Nonetheless, this order is just a convention,
not changing the IFIM calculation but only the order of the
d parameters to be stacked. If we choose the convention
proposed in the appendix (A-B), one obtains:

T = diag

1, . . . , 1︸ ︷︷ ︸
n

, 2, . . . , 2︸ ︷︷ ︸
n (n−1)

2

 . (44)

• Computation of C:
In the same way as previously, if

ϵ→log p
(
Z|X⊕ Exp∧G′ (ϵ)

)
is sufficiently regular in

the sense of the condition (10) then

E
(
∇Mlp(X,⊕)∇Σlp(X,⊕)⊤

)
= − E

(
∂2lp

(
X,
[
ϵM1 ;0

]
,
[
0; ϵΣ2

]
,⊕
)

∂ϵM1 ∂ϵΣ2

∣∣∣∣∣
ϵM1 ,ϵΣ2 =0

 (45)

= −E (∇M,Σlp(X,⊕)). (46)

Furthermore, we can demonstrate that:

∇Mlp(X,⊕) =
∂fi(M ∗ Exp∧

G

(
ϵM1 )

)
∂ϵM1

⊤

Σ−1(
zi − fi(M ∗ Exp∧

G

(
ϵM1
) )∣∣

ϵM1 =0
. (47)

Therefore, by differentiating the previous expression according
to ϵΣ2 , we gather:

∇2
M,Σlp(X,⊕)

=
∂fi(M ∗ Exp∧

G

(
ϵM1 )

)
∂ϵM1

⊤ ∂
(
Σ⊙ Exp∧

P+(s)

(
ϵΣ2
) )−1

∂ϵΣ2
×
(
zi − fi(M ∗ Exp∧

G

(
ϵM1
)
)
)∣∣

ϵM1 =ϵΣ2 =0
.

=
∂fi(M ∗ Exp∧

G

(
ϵM1 )

)
∂ϵM1

⊤∣∣∣∣∣
ϵM1 =0

∂
(
Σ⊙ Exp∧P+(s)

(
ϵΣ2
) )−1

∂ϵΣ2

∣∣∣∣∣∣∣
ϵΣ2 =0

× (zi − fi(M))) . (48)

By taking the expected value,

E
(
∇2

M,Σlp(X,⊕)
)
=

∂fi(M ∗ Exp∧
G

(
ϵM1 )

)
∂ϵM1

⊤∣∣∣∣∣
ϵM1 =0

∂
(
Σ⊙ Exp∧P+(s)

(
ϵΣ2
) )−1

∂ϵΣ2

∣∣∣∣∣∣∣
ϵΣ2 =0

E (zi − fi(M))) . (49)

As E (zi) = fi(M), the last equality is equal to 0.

Remark:
In the same way as in [27], it is worth noting that the ex-

pression of the bottom right block of the C-LG-CRB does not
depend on the values of Σ contrary to the classical Euclidean

CRB for the covariance matrix given by
2

N
(Σ⊗Σ)

−1
. Thus,

it can be considered as a bound that underestimates the quality

of the covariance estimator. Indeed, by observing the previous
expression, we remark that a covariance matrix with a certain
configuration with a high matrix norm (for instance Frobenius
norm), will provide a much smaller bound difficult to reach
for any covariance estimator.

IV. CLOSED-FORM EXPRESSIONS

In this section, we propose to derive the C-LG-CRB for
two Euclidean observation models. First, we are interested
in the well-known Wahba’s problem [35]. It is worth noting
that the expression of the bound on LG has been already
established for a known covariance matrix by using the Fisher
information matrix expression based on the LG-Hessian of the
log-likelihood of the observations [18]. Here, the expression
is computed by using the proposed Slepian-Bangs formula on
LGs (16) and C-LG-CRB. Second, we propose to deal with the
pin-hole camera model which is a well-known model encoun-
tered in computer vision and camera perception [49]. Contrary
to the Wahba’s problem, to the best of our knowledge, for
this model both LG-CRB and C-LG-CRB have not yet been
computed in the state-of-the-art.

A. Wahba’s problem

We assume 3D points {pi}Ni=1 governed by the following
model [35]:

zi = Rpi + p+ ni, ni ∼ N (0,Σ), (50)

where R is an unknown rotation matrix lying on SO(3)
and p an unknown translation belonging to R3. It can be
reformulated as an observation model on SE(3) with M =[

R p
01×3 1

]
and classical multiplicative law ∗:

zi = fi(M) + ni (51)

with:

fi(M) = ΠMp̃i (52)

p̃i =
[
p⊤
i , 1

]⊤
(53)

Π = [I3×3,03×1]. (54)

Corollary IV-A.0.1 (Closed-form C-LG-CRB for the

Wahba’s problem). The IFIM on X =

[
M 04×3

03×4 Σ

]
,M ∈

SE(3),Σ ∈ P+(3) for the model (51) is given by

IG′ =


N∑
i=1

(ΠMg(pi))
⊤
Σ−1ΠMg(pi) 06×6

06×6

[
N

2
0

0 N

]
⊗ I3


(55)

with ⊗ is the Kronecker product and

g(pi) =

[
[pi]× I
0 01×3

]
. (56)
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Proof:

• First, we obtain that the column l of the Lie derivative
of fi is:

[∇fi(M, ∗)]l = ΠMG
se(3)
l pi, (57)

where {Gse(3)
l }6l=1 a basis of se(3), the Lie algebra

of SE(3) given in Appendix A. Then, ∇fi(M, ∗) is
obtained.

• The expression of B given by (30) is obtained by using
the natural basis of S+(3), with dimension d = 6, which
is given whose expressions are given in appendix (A).
Then, we deduce that

T =

[
1 0
0 2

]
⊗ I3.

B. Computer vision problem

Now, we derive the C-LG-CRB for the pin-hole model.
Classically, it allows to describe the pixel detection of 3D
points observed by a camera. To define this model, we propose
to consider a vision example where a mobile robot is equipped
with a monocular camera trying to localize itself by using
detection of some observed patterns, in an indoor environment.

• The mobile is characterized by its unknown pose giving
the attitude R ∈ SO(3) and the position of the mobile
p ∈ R3,

M =

[
R p

01×3 1

]
∈ SE(3). (58)

• According to the formalism proposed in [50], we assume
that each pattern i is constituted of several detected 3D
points. In the local frame attached to the pattern, 3D
points {qi,j}

Nq

j=1 are assumed known and every pattern
i ∈ {1, . . . , NP } can be fully characterized by the SE(3)
transformation between the local pattern frame and a

world frame, M
(i)
P =

[
R

(i)
P p

(i)
P

01×3 1

]
∈ SE(3). This

transformation is assumed known and can be computed in
a previous camera calibration phase [51] in which camera
frame and world frame are confused.

corrupted by the noise detection ni,j which is assumed
Gaussian with mean 0 and covariance matrix Σ unknown.
The Gaussian assumption is assumed valid because no physical
phenomenon (for instance interference or light reflection [52],
[53]), in an indoor context, has an impact on the image
formation [54].

Thus, by considering zi =
[
z⊤i,1, . . . , z

⊤
i,Nq

]⊤
and by noting

π(x) ≜ Πx
[x]3

, we have

zi = fi(M) + ni, (59)

with

fi(M) = (60)[
fi,1(M;M

(i)
P ,qi,1)

⊤, . . . , fi,Nq
(M;M

(i)
P ,qi,Nq

)⊤
]⊤

,

(61)

fi,j(M;M
(i)
P ,qi,j) = Kπ(MM(i)

p

[
q⊤
i,j , 1

]⊤
), (62)

ni =
[
n⊤
i,1, . . . ,n

⊤
i,Nq

]⊤
. (63)

Note that K corresponds to the camera’s calibration matrix.

Fig. 5. Representation of geometrical transformation

Corollary IV-B.0.1 (Closed-form C-LG-CRB for the pin–

hole model). The IFIM on X =

[
M 04×2

02×4 Σ

]
,M ∈

SE(3),Σ ∈ P+(2) for the model (59) is given by:

IG′ =



N∑
i=1

∇fi(M, ∗)⊤ Σ−1∇fi(M, ∗) 06×3

03×6


N

2
0 0

0
N

2
0

0 0 N

 .


(64)

with:

N = NP Nq (65)

∇fi(M, ∗) =
[
D⊤

i,1 · · · D⊤
i,Nq

]⊤
(66)

where Di,j is given by

Di,j = K
∂π(x)

∂x

∣∣∣∣
x=Mg

(
M

(i)
p [q⊤

i,j ,1])
) (67)

with g defined in (56).

Proof:
• As for the Wahba’s problem, the expression of Di,j

can be achieved by using classical composition rule
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derivatives applied to the new function fi,j(M) and use
the fact that:

∂π(MExp∧
SE(3) (δ) )

∂δ

∣∣∣∣∣
δ=0

=
∂π(x)

∂x
(68)

computed for x = M
∂Exp∧SE(3)(δ)

∂δ

∣∣∣
δ=0

[
q⊤
i,j , 1

]⊤
.

• By taking advantage of the natural basis of S+(2) given
by:

GP
1 =

[
1 0
0 0

]
,GP

2 =

[
0 0
0 1

]
,GP

3 =

[
0 1
1 0

]
, (69)

B can be computed with the formula (30).

V. SIMULATIONS

In this section, we propose to numerically validate the
proposed C-LG-CRB on the two models shown in the pre-
vious section. To achieve that, we compare it to the IMSE.
In the two cases, the unknown LG parameter belongs to
G′ = SE(3) × P+(s). Then, we study the influence of the
covariance structure on the behavior of the C-LG-CRB for
different scenarios.

A. Details of implementation

To compute the IMSE, we use the empirical expression of its
trace which can be approximated by Monte-Carlo simulation
for both parameters M and Σ. They are respectively given by:

1

Nr

Nr∑
nr=1

∥l∗SE(3)(M,
(
M̂
)
nr

)∥2, (70)

1

Nr

Nr∑
nr=1

∥l⊙P(s)+(M,
(
M̂
)
nr

)∥2, (71)

where Nr is the number of realizations. The estimators M̂
and Σ̂ are obtained by a LG Gauss-Newton recursion, where
at each iteration l, the covariance matrix is updated with its
unbiased empirical estimator provided by

Σ̂(l) =
1

N − 1

N∑
i=1

(
zi − fi(M̂

(l))
)(

zi − fi(M̂
(l))
)⊤

, (72)

where M̂(l) is the current estimation of M at iteration l.
Concerning the C-LG-CRB, it is assessed by inverting the
matrix IG. Then, the IMSE on M and Σ are respectively
bounded by the trace of the top-left and bottom-right of IG.

B. Wahba’s problem

To simulate the model, we propose to generate a number
of observations, denoted N , of random points {pi}Ni=1 in the
following way:

pi ∼ NR3(pm, σ2
m I3) ∀i ∈ {1, . . . N}, (73)

where pm = [1, 1, 1]⊤ and σm = 0.5meter. The covariance of
the model is assumed to be either diagonal or non-diagonal.
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3

(a) C-LG-CRB on M superimposed to the
IMSE versus the number of observations.
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(b) C-LG-CRB on Σ superimposed to the
IMSE versus the number of observations.

Fig. 6. Evolution of the IMSE and the C-LG-CRB for Σ =0.1 0 0
0 0.1 0
0 0 0.1

.
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(a) C-LG-CRB on M superimposed to the
IMSE versus the number of observations.
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(b) C-LG-CRB on Σ superimposed to the
IMSE versus the number of observations.

Fig. 7. Evolution of the IMSE and the C-LG-CRB for Σ = 0.1 0.01 0.02
0.01 0.1 0.01
0.02 0.01 0.1

.

By observing figures 6 and 7, we remark the consistency
and convergence of the IMSE towards the C-LG-CRB for a
large number of observations. When the covariance admits
correlation, we observe in figures (7)-(a) and (7)-(a) that a
lower number of observations induces a higher gap between
IMSE and C-LG-CRB than without correlation. Nonetheless,
as observed in the figures (6)-(b) and (7)-(b) we notice that
the structure of Σ does not influence the asymptotic behavior
of both IMSE and the bound. It is consistent because the
covariance block of the proposed bound does not depend
directly on Σ but only on this LG geometry. This observa-
tion can be confirmed by building several sets of correlated
covariance matrices. To achieve that, we generate Σ with the
eigenvalues-eigenvectors form UDU⊤. U ∈ SO(3) contains
the eigenvectors. We propose to parametrize U with the
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Fig. 8. Evolution of the IMSE and the C-LG-CRB versus α and N = 100.

following LG-form U = Exp∧
SO(3) (α13×1) where α ∈ R

quantifies the degree of correlation. Indeed, when α → 0, then
U → I. Conversely, when α → π tends towards 0, U becomes
non-diagonal which creates a non-diagonal structure for Σ.
In figure 8, we observe that α admits poor influence on the
behavior of the pose part of the C-LG-CRB. When α becomes
high i.e. the correlation on Σ are non-negligible, the C-LG-
CRB and the IMSE stay stable. This behavior corroborates the
previous observation on the fact that the correlation term does
not impact the C-LG-CRB computation.

C. Pin-hole problem

Now, we are interested in simulating the pin-hole model
given by the equation (59). To succeed in that, we use the
pattern modeling proposed in [41]. The latter can be described
by four elliptical shapess drawn where the detected points
by the camera correspond to the center of each one of these
shapes.

Fig. 9. Geometry of each pattern. The camera detects the center of each
ellipse.

As illustrated in figure 9, the coordinates {qi}4i=1 of each
point in the local frame attached to the pattern depend on the
known inter-distance equal to L. Furthermore, we assume that
the maximal number of patterns observed is equal to 9. The
camera calibration matrix is fixed with standard values of νx
and νy , xo, and yo that we can find in the literature [36].

To assess the performance of the estimator, we compute the
C-LG-CRB for different values of the number of observed
patterns by the camera.
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(a) C-LG-CRB on M superimposed to the
IMSE versus the number of observations
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(b) C-LG-CRB on Σ superimposed to the
IMSE versus the number of observations.

Fig. 10. Evolution of the IMSE and the C-LG-CRB for Σ =

[
0.1 0
0 0.1

]
.
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(a) C-LG-CRB on M superimposed to the
IMSE versus the number of observations
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(b) C-LG-CRB on Σ superimposed to the
IMSE versus the number of observations.

Fig. 11. Evolution of the IMSE and the C-LG-CRB for Σ =

[
0.1 0.01
0.01 0.1

]
.

As previously, we consider two kind of covariance matrix
structures, diagonal and non-diagonal, as illustrated in figures
10 and 11. In both cases, and as in the previous model,
we observe the convergence of the C-LG-CRB for the two
scenarios. It is worth noting that the convergence of the IMSE
for Σ has the same speed in the two cases. It empirically
proves that the bound takes into account a full structure in the
same way as a diagonal structure. This behavior is observed
because the geometry is always considered. We also study
more precisely the relevance of the C-LG-CRB by considering
different values of the inter-distance L to observe its impact
on the convergence of the IMSE to the bound. To achieve that,
we plot the error between the IMSE and the C-LG-CRB as a
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function of L for a maximal number of patterns. This allows
to quantify the convergence rate of the IMSE to the bound.
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Fig. 12. Evolution of the error versus L for Np = 9.

In figure 12, we observe the evolution of this error according
to L. The higher L is, the more accurate the convergence rate
becomes. It means that the bound can be achieved more rapidly
when the camera observations are more scattered.

VI. CONCLUSIONS

In this article, we derived an intrinsic Cramér-Rao bound
on Lie groups when an unknown covariance matrix needs to
be considered in the estimation problem and the observations
lie on an Euclidean space. The bound was established by
leveraging the Lie group structure of the covariance matrix
space to obtain a parameter that belongs to the product
of two Lie groups. In this manner, closed-form expressions
were developed and numerically validated for two models
commonly used in signal processing problems. The prospects
of this work are manifold. Firstly, it would be pertinent to
extend the bound to cases where the observations also lie
on Lie groups. Secondly, adapting it for dynamic parameters
would be a challenging yet crucial endeavor, particularly in
the context of tracking problems involving Lie groups, where
the covariance matrix of the process model is unknown.

APPENDIX A
BASIS EXPRESSIONS

A. se(3) basis

Let the vector w ∈ R6 which can be divided into [v,u]. A
basis of SE(3) {Gi}6i=1 is defined such as:

[
[v]× u
0 0

]
=

6∑
i=1

wiG
se(3)
i (74)

where [.]× is a operator transforming w to an anti-symmetric
matrix. Then, we gather:

G
se(3)
1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,G
se(3)
2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,

(75)

G
se(3)
3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 G
se(3)
4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

(76)

G
se(3)
5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , G
se(3)
6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (77)

B. S+(3) basis

A natural basis of the Lie algebra S+(3) is:

GP
1 =

1 0 0
0 0 0
0 0 0

 ,GP
2 =

0 0 0
0 1 0
0 0 0

 ,GP
3 =

0 0 0
0 0 0
0 0 1


(78)

GP
4 =

0 1 0
1 0 0
0 0 0

 ,GP
5 =

0 0 1
0 0 0
1 0 0

 ,GP
6 =

0 0 0
0 0 1
0 1 0


(79)

APPENDIX B
DEMONSTRATIONS

A. Demonstration of (39)

First, we remind that for all operator A : Rs → Rs×s and
∀δ ∈ R:

∂log|A(δ)|
∂δ

= tr
(
A(δ)−1 ∂A(δ)

∂δ

)
(80)

Furthermore:

∀E,F ∀δ ∈ R
∂ Expm (E+ δF)

∂δ
= EExpm (E+ δF) (81)

Thus, the following expression

log|Σ⊙ Exp∧P
(
ϵΣ1
)
⊙ Exp∧

P
(
ϵΣ2
)
| (82)

which can be written as:

log|Expm
(
Logm (Σ) + sym(ϵΣ1 ) + sym(ϵΣ2 )

)
| (83)

admits, according to (80), the following intrinsic derivative
according to ϵΣ1 :

∂

∂
(
ϵΣ1
)
i

log|Expm
(
Logm (Σ) + sym(ϵΣ1 ) + sym(ϵΣ2 )

)
|

= tr

(
Expm

(
Logm (Σ) + sym(ϵΣ1 ) + sym(ϵΣ2 )

)−1 ∂G(ϵΣ1 , ϵ
Σ
2 )

∂
(
ϵΣ1
)
i

)
(84)
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with:

G(ϵΣ1 , ϵ
Σ
2 ) = Expm

(
Logm(Σ) + sym(ϵΣ1 ) + sym(ϵΣ2 )

)
(85)

Furthermore, sym() can be decomposed on the natural basis
of S+(n) so that:

sym(ϵΣ1 ) =

d∑
i=1

(
ϵΣ1
)
i
GP

i (86)

Therefore, we obtain that:

∂B(ϵΣ1 , ϵ
Σ
2 )

∂
(
ϵΣ1
)
i

=

∂

∂
(
ϵΣ1
)
i

Expm

(
Logm(Σ) +

d∑
i=1

(
ϵΣi
)
i
GP

i + sym
(
ϵΣ2
))
(87)

and according to the formula (81), we have:

∂B(ϵΣ1 , ϵ
Σ
2 )

∂
(
ϵΣ1
)
i

= GP
i Expm

(
Logm(Σ) + (ϵi)1 G

P
i + sym

(
ϵΣ2
))

(88)

= GP
i Expm

(
Logm(Σ) + sym

(
ϵΣ1
)
+ sym

(
ϵΣ2
))

(89)

Consequently, it implies that:

∂

∂ (ϵ1)i
log|Expm

(
Logm (Σ) + sym(ϵΣ1 ) + sym(ϵΣ2 )

)
| = tr

(
GP

i

)
(90)

Then, by differentiating a new time according to
(
ϵΣ2
)
j
, we

deduce that:
∂2

∂
(
ϵΣ2
)
j
∂
(
ϵΣ1
)
i

log|Expm
(
Logm (Σ) + sym(ϵΣ1 ) + sym(ϵΣ2 )

)
|

= 0 (91)

B. Demonstration of (40)

By definition, we know that:(
Σ⊙ Exp∧

P
(
ϵΣ1
)
⊙ Exp∧

P
(
ϵΣ2
) )−1

= Expm
(
Logm(Σ) + sym

(
ϵΣ1
)
+ sym

(
ϵΣ2
))−1

(92)

= Expm
(
−
(
Logm(Σ) + sym

(
ϵΣ1
)
+ sym

(
ϵΣ2
)))

(93)

Consequently, the derivative according to ϵ1 can be written
as:

∂Expm
(
−
(
Logm(Σ) + sym

(
ϵΣ1
)
+ sym

(
ϵΣ2
)))

∂
(
ϵΣ1
)
i

(94)

= GP
i Expm

(
Logm(Σ) + sym

(
ϵΣ1
)
+ sym

(
ϵΣ2
))

(95)

By differentiating a second time according to ϵΣ2 , we have:

∂Expm
(
−
(
Logm(Σ) + sym

(
ϵΣ1
)
+ sym

(
ϵΣ2
)))

∂
(
ϵΣ1
)
i
∂
(
ϵΣ2
)
j

= GjGi Expm − (Logm(Σ) + sym
(
ϵΣ1
)
+ sym

(
ϵΣ1
)
)
(96)

which provides the equation (40).
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